GeoPard Tutorials | Precision Ag Software
  • Introduction to GeoPard
    • GeoPard Platform: Frequently Asked Questions (FAQ)
  • 🖥️Product Tour - Web App
    • Getting Started
      • Create a new farm
      • Draw a new field
      • Upload a field boundary
      • Edit a boundary
      • Edit a field name
      • Add a label
    • 🛰️Satellite Monitoring
      • Order Planet Scope (3m daily) imagery
      • Indices for Crops and Soils
      • 📈Crop Development Index Graph
    • 📊Zones Maps and Analytics
      • Assign Variable Rates in the Zones (Ag inputs Rates Distribution Tool)
      • Creating Zones Map using Satellite Imagery
      • Creating Zones Map using Soil/Yield/As Applied Data
      • Creating Zones Map using Topography
      • Creating Zones Map using a Template
      • Draw Zones Manually, Clone from an existing layer
      • Usage of Data Classification
      • Edit Zones Map: Merge & Split
      • Multi-Year Zones
      • Multi-Layer Analytics
      • Compare layers
      • Heterogeneity factor
      • Relative variation factor
    • 📊Equation-based Analytics
      • Batch Equation analytics
      • Catalog of Predefined Agronomic Equations
      • Catalog of Custom Functions
    • ⛰️Topography
    • ⛰️3D Maps
    • Import
      • Field Boundary
      • Soil Data
      • Yield Data
      • As Applied/As Planted Data
      • Machinery Proprietary Formats
      • Import from MyJohnDeere
    • Export / Download
      • Field Boundary Export
      • Batch Export of Boundaries, Zones and Scouting Pins
      • Zones Map Export as shapefile
      • Satellite Imagery Export as geotiff or geojson
      • Export Scouting Notes as shapefile
      • Export VRA map In ISOXML Format
      • Export to MyJohnDeere
    • 🤖API
    • Operations Log - Track errors/Imports and Analytics
    • Organizations and Roles
    • Farms Sharing between Accounts & Organizations
    • Managing Crop Season information with tags(labels)
      • Case: Managing fields for several clients
      • Case: Season details including crop and year
      • Case: Field operation details
    • ⚙️User Settings
      • Subscriptions, Account limits & Plans
      • Restoring password
      • Order the package
      • Changing preferences
    • 🚜John Deere Operations Center Integration
      • 🚜John Deere Operations Center Integration
        • 1. Create Free Trial Account with you John Deere Account
        • 2. Connect to JohnDeere Operations Center
        • 3. Connect to John Deere Organizations
        • 4. Import into GeoPard from John Deere Operations Center
        • 5. Configure Automated Data Sync
        • 6. Export Rx Maps to John Deere Operations Center as Files
        • 7. Export Field Boundaries into John Deere Operations Center
          • 7a. Organization configuration of export boundary to John Deere Operations Center as File
        • 8. Export Rx Maps to John Deere Operations Center as Work Plans
        • 9. Export Soil, Topography, Satellite or Analytics as Map Layers
      • 🚜John Deere Operations Center Data Sharing
        • 1. "Staff Member" sharing
        • 2. Problem-solving of "Staff Member" sharing
        • 3. "Partner Organization" sharing
        • 4. Problem-solving of "Partner Organization" sharing
        • 5. Problem-solving of import from John Deere to GeoPard
        • 6. Problem-solving of Work Plan creation
        • 7. Sharing Fields/Boundaries Between Partner Organizations in John Deere Ops Center, DataSync config
  • 🚀Changelog & Product Releases
    • Release Notes
      • Release Web April 2025 (Rates Distribution, improved Legends)
      • Release Web March 2025 (Improved Zones, WorkPlans updates, Yield data enhancements)
      • Release Web January 2025 (Free Trial, Usage-based Pricing Plan, USDA Yield Cleaning protocol, Export of calibrated Yield data to John Deere Ops Center, Import of kml)
      • Release Web August 2024 (Data Layer Previews, Spatially localized Zones; Use zones and Equations in new Equations)
      • Release Web July 2024 (Equation Map creation, Spatially localized zones, Seeding and Application Work Plans)
      • Release Web May 2024 (Raw view for Satellite Images, export of Zone Maps as WorkPlan to the John Deere Operations Center, redesign of Batch Analytics)
      • Release Web April 2024 (Batch Equation Maps and enhanced layer transparency)
      • Release Web February 2024 (Per area pricing, units)
      • Release Web January 2024 (many UI improvements)
      • Release Web November 2023 (Clone Polygons, Subscription management)
      • Release Web October 2023 (Yield Calibration, Equation Maps as ISOXML, PDF Export and John Deere Integration)
      • Release Web September 2023 (Cleaning & Calibrating Yield Datasets, more languages support)
      • Release Mobile August 2023 (Mobile app impovements)
      • Release Web July 2023 (Operations Log page, Sum in datasets)
      • Release Web June 2023 (Improved Equations, Operations log v1)
      • Release Mobile May 2023 (Social Login)
      • Release Web May 2023 (John Deere integration improvements)
      • Release Web January 2023 (huge amount of small improvements)
      • Release Web October 2022 (Integration with AgGateway protocols, Isoxml support and more)
      • Release Web April 2022 (3D maps and Zoning Tools)
  • 👨‍🌾Agronomy
    • Precision Agronomy Use Cases & Best Practices Overview
    • Field Management Zones (Productivity Zones) Creation Process
    • Variable Rate Seeding (Planting) Maps
    • Yield Calibration & Cleaning
    • Synthetic Yield Map
    • Create Soil Sampling Zones, Points, Route, export as KML, and execute
    • Evaluate Accuracy of Seeding Application
    • Evaluate Accuracy of Fertilizer Application
    • Field Trial Analytics
    • Nitrogen Use Efficiency & Uptake
    • Comparing Yield Datasets
    • Compare Soil Scanner Data between Years
    • Flood Detection / Insurance report
    • Profit Maps (COMING)
    • VRA/Rx/Prescription Fertilizer Maps (COMING)
    • VRA/Rx/Prescription Nitrogen Maps (COMING)
    • VRA/Rx/Prescription Spraying Maps (COMING)
    • Multi-Layer Field Potential Maps (COMING)
    • VR Lime Application Based on Soil Scanner pH Data (COMING)
    • Merging Yield Datasets Belonging to the Same Field (COMING)
  • 📱Product Tour - Mobile App
    • Installation
    • Logging in
    • Viewing satellite images
    • Viewing zones maps
    • Viewing soil data
    • Viewing yield data
    • Viewing topography maps
    • Viewing as applied datasets
    • Working in the field/Scouting zones maps
    • Working offline
    • Filters
    • Options
    • Settings
  • 🤖API Docs
    • GeoPard API Overview
    • Getting Started
    • Authorization: ApiKey, Credentials or OAuth 2.0
    • Diagrams with Basic Flows
      • 1. Field Registration
      • 2. GraphQL Subscription
      • 3. Grep Satellite Imagery
      • 4. Upload Soil | AsApplied | Yield Datasets
      • 5. Execute Equations
      • 6. Generate ZonesMap
      • 7. Download Gridded Data
      • 8. Download Original Data
    • Data Schema
    • Requests Overview
      • 1. Subscription: Get Events
      • 2. Query: Get "Fields"
      • 3. Query: Get "SatelliteImages"
      • 4. Query: Get defined "SatelliteImage"
      • 5. Query: Get "RasterMaps"
      • 6. Query: Get "ZonesMaps"
      • 7. Mutation: Generate "ZonesMap"
      • 8. Mutation: Generate "RasterMap"
      • 9. Mutation: Generate "ZonesMap" asynchronously
      • 10. Mutation: Generate "RasterMap" asynchronously
      • 11. Mutation: Generate Yield based "ZonesMap" asynchronously
      • 12. Mutation: Generate Soil based "ZonesMap" asynchronously
      • 13. Mutation: Create "Farm"
      • 14. Mutation: Create a "Field" or edit the boundary of the existing field (with optional labels)
      • 15. Query: Get "TopographyMap"
      • 16. Query: Get "YieldDatasets"
      • 17. Query: Get "SoilDatasets"
      • 18. Mutation: Generate zip archive with "ZonesMap" and "Field"
      • 19. Mutation: Delete "Field"
      • 20. Mutation: Delete "Farm"
      • 21. Mutation: Delete "ZonesMap"
      • 22. Mutation: Delete "RasterAnalytisMap"
      • 23. Mutation: Delete "SoilDataset"
      • 24. Mutation: Delete "YieldDataset"
      • Notes (Pins)
        • 25. Mutation: Save "Note" attached to "Field"
        • 26. Mutation: Save "Note" attached to "ZonesMap"
        • 27. Mutation: Save "Note" attached to "SoilDataset"
        • 28. Mutation: Save multiple "Notes", Batch operation
        • 29. Mutation: Delete "Note"
        • 30. Mutation: Delete multiple "Notes"
        • 31. Query: Get all "Notes" related to "Field"
        • 32. Query: Get "Notes" related to "ZonesMap" and type
        • 33. Query: Get "Notes" related to "SoilDataset" and type
        • 34. Query: Get a selected "Note" with all "Comments"
        • 35. Mutation: Add "Comment" to the selected "Note"
        • 36. Mutation: Add multiple "Comments" to the selected "Notes"
      • 37. Query: Get "SatelliteImages" in the defined interval
      • 38. Query: Get "UserData"
      • 39. Mutation: Set custom color schemas to selected "GeoMaps"
      • 40. Query: Get "Labels" on the account level
      • 41. Mutation: Save "Labels" on the account level
      • 42. Mutation: Delete "Label" on the account level
      • 43. Query Get "Fields"
      • 44. Mutation: Set Field Labels
      • 45. Mutation: Save User Data
      • 46. Mutation: Generate multi-layer "ZonesMap" asynchronously
      • 47. Query: Get "ZonesMaps"
      • 48. Query: Get Gridded Data from "TopographyMap"
      • 49. Query: Get Gridded Data from "FieldSatelliteImage"
      • 50. Query: Get Gridded Data from "VectorAnalysisMap"
      • 51. Query: Get Gridded Data from "YieldDataset"
      • 52. Query: Get Gridded Data from "SoilDataset"
      • 53. Query: Get Gridded Data from "AsAppliedDataset"
      • 54. Query: Get Vector Data from "SoilDataset"
      • 55. Upload zip files (over 6 MB)
      • 56. Upload photos
      • 57. Query: Get "Photos" attached to the selected "Note"
      • 58. Query: Get "Photos" attached to "Comments"
      • 59. Query: Get "AsAppliedDatasets"
      • 60. Mutation: Generate As-Applied-based "ZonesMap" asynchronously
      • 61. Mutation: Delete "AsAppliedDataset"
      • 62. Mutation: Share Farms
      • 63. Mutation: Save Organization
      • 64. Mutation: Add Users to Organization
      • 65. Mutation: Delete Users from Organization
      • 66. Mutation: Save Field
      • 67. Mutation: Save Farm
      • 68. Mutation: Refresh "VectorAnalysisMap" Statistics
      • 69. Mutation: Delete "Photo"
      • 70. Mutation: Delete multiple "Photos"
      • 71. Mutation: Generate a zip archive with "Notes"
      • 72. Query: Get Gridded Data as GeoJSON or GeoTIFF
      • 73. Query: Get Gridded Data with the Selected Buffer
      • 74. Mutation: Verify "Equation"
      • 75. Mutation: Generate "EquationMap" asynchronously
      • 76. Query: Get "EquationMap"
      • 77. Mutation: Delete "EquationMap"
      • 78. Query: Find "Fields" by "externalKey"
      • 79. Query: Find "Farms" by "externalKey"
      • 80. Query: Get Original Data
      • 81. Query: Get GeoJSON of "EquationMap"
      • 82. Query: Restore Subscription Events
      • 83. Query: Collect Platform Context
      • 84. Mutation: Calibrate and Clean YieldDataset
      • 85. Mutation: Assign Rates to VectorAnalysisMap (ZonesMap)
      • 86. Query: Get "Farms"
      • 87. Mutation: Save Custom VectorAnalysisMap (ZonesMap)
      • 88. Mutation: Export ZonesMap as Zipped Shapefile
      • 89. Mutation: Export ZonesMap as Zipped ISOXML
    • Geo Endpoints
      • WMS - Get Raster Pictures of Spatial Data Layers
        • 1. LAI
        • 2. RGB
        • 3. Field: boundary
        • 4. Field: thumbnail
        • 5. ZonesMap
        • 6. ZonesMap: custom color schema
        • 7. ZonesMap: thumbnail
        • 8. RasterMap
        • 9. RasterMap: custom color schema
        • 10. RasterMap: thumbnail
        • 11. TopographyMap: elevation in absolute numbers
        • 12. YieldDatasetsMap
        • 13. SoilDatasetsMap
        • 14. SoilDatasetsMap: custom color schema
        • 15. AsAppliedDatasetsMap
        • 16. Satellite Image: cropped by Field boundary
        • 17. Satellite Image: cropped by Field boundary and custom color schema
        • 18. YieldDatasetsMap: custom color schema
        • 19. Satellite Image: 10 colors visualization
      • WFS - Get Spatial Data Layers in Vector format (shp, geojson)
        • 1. Get the Field Boundary as Geojson
        • 2. Get the Zones map as Geojson
        • 3. Get Zones Attributes as JSON
        • 4. Get Soil data as Geojson
        • 5. Get Yield data as Geojson
    • Uploading Files
    • API FAQ
  • 🛣️Platform Roadmap
    • Roadmap
  • GIS quick Hints
    • QGIS: Change String to Number values in the shapefile
    • QGIS: Yield Data Manipulations
    • QGIS: Split Boundaries Into Subfields
    • QGIS: Merge Vector Layers
    • QGIS: Merge Selected Features from Vector Files
    • QGIS: Calculate NDVI for the Drone Geotiff File
    • QGIS: Split Multi-field Shapefiles
    • QGIS: Convert CSV to SHP
    • QGIS: Reproject Shapefile
  • Policies
    • Your Data Stays Yours, Securely Managed By GeoPard
    • Terms & Conditions
    • Privacy Policy
Powered by GitBook

Start Working with GeoPard

  • Go to GeoPard Website
  • Demo Request
  • LinkedIn

This Portal Sections

  • Introduction
  • Product Tour - Web App (incl. video)
  • Product Tour - Mobile App (incl. video)
  • Precision Agronomy Use Cases

Powered by GeoPard Agriculture - Automated precisionAg platform

On this page
  • Assessing Yield Gaps: The Importance of Synthetic Yield Mapping
  • Technical Approach
  • Real-World Examples
  • Corn Silage Yield Map: Real vs Synthetic
  • Corn: Real vs Synthetic
  • Soybean: Real vs Synthetic
  • Restoration of Wheat Yield Map

Was this helpful?

  1. Agronomy

Synthetic Yield Map

GeoPard's Synthetic Yield Map Module enables farmers to generate accurate retrospective yield maps for past years, enhancing data-driven farm management.

PreviousYield Calibration & CleaningNextCreate Soil Sampling Zones, Points, Route, export as KML, and execute

Last updated 4 months ago

Was this helpful?

Assessing Yield Gaps: The Importance of Synthetic Yield Mapping

The GeoPard Synthetic Yield Map Module addresses a common challenge in agriculture: the lack of detailed historical yield data for many farmers. While farmers often have average or total yield values per field, detailed yield maps for past years are frequently unavailable. GeoPard's module offers a solution by enabling the retrospective creation of yield maps with high accuracy (over 90%).

This functionality is particularly valuable for farmers who want to understand and analyze the yield performance of their fields over the years. The module uses available average or total yield data and applies GeoPard's analytical methods to generate detailed yield maps for any past year.

By creating these synthetic yield maps, farmers gain insights into yield distribution and variability within their fields. This information is crucial for making informed decisions about crop management, resource allocation, and planning future agricultural strategies.

In summary, the GeoPard Synthetic Yield Map Module provides a practical tool for farmers to unlock historical yield insights, allowing for a more data-driven approach to farming even when detailed past records are not available.

Understanding the geospatial distribution of yield is crucial for fine-tuning agronomic decisions year after year, and Yield Maps (or Yield Datasets) play a key role in this process.

However, necessary equipment is not always installed at harvesters to record yield mapping data, especially for older models. Consequently, Yield Maps often cover only portions of fields that are harvested using machines with yield mapping capabilities.

Addressing these challenges, GeoPard is on the finalization release of its Synthetic Yield Map, a solution designed to provide comprehensive yield insights regardless of equipment limitations.

Technical Approach

Synthetic Yield Maps are generated by leveraging GeoPard's extensive experience in yield dataset management, focusing on identifying yield-limiting factors, evaluating historical , and analyzing . This methodology allows for the generation of yield distribution maps even in the absence of direct yield data from harvesting machines.

Remote sensing data forms the basis for the geospatial distribution, while the calibration to actual yield values is achieved by aligning with the field's reported average or total yield. This approach ensures each area of the field is accurately represented, offering a complete and reliable picture of yield distribution across the entire field.

Real-World Examples

To maintain a high level of accuracy in the calculations, Yield Calibration is essential as an extra step. It helps eliminate anomalies and correctly adjust statistical data distribution. Discover more about the and how you can do it with GeoPard.

Corn Silage Yield Map: Real vs Synthetic

The verification of the Synthetic Yield Map was conducted using an original Yield Map of Corn Silage. This process highlighted the necessity of Yield Calibration as an intermediate step to eliminate data outliers and correct yield values.

Corn: Real vs Synthetic

The statistical and geospatial data distributions of Corn Yield as Mass (t/ha) for Calibrated Yield and Synthetic Yield datasets are available in the following screenshot.

Soybean: Real vs Synthetic

The following screenshot presents the statistical and geospatial data distributions for Soybean Yield mass in both Calibrated and Synthetic Yield datasets. It's important to note that while the Original Yield Data was provided in mg/m2, the Synthetic Yield Data has been converted and is presented in t/ha.

Restoration of Wheat Yield Map

The Yield Calibration step is still required to eliminate anomalies in yield data distribution.

The comparison of the known parts of the Yield Map and the restored Yield Map is in the following screenshot.

The geospatial pattern of the Synthetic Yield Map is derived from GeoPard's advanced understanding of and their expertise in . Then it was calibrated using the average value of Corn Silage Yield, ensuring that the geospatial pattern aligns closely with actual yield figures. The statistical and geospatial data distributions of Yield as Mass (t/ha) are available in the following screenshot.

In many instances, only a partial Yield Map is available. There are many factors, among the most popular: older machinery lacks the necessary equipment to log harvesting data (1), the human factor (2), and the collected data turns out to be unusable (3). GeoPard addresses these challenges by restoring incomplete Yield Maps. The process involves a comprehensive assessment of and , utilizing GeoPard's refined methods in yield data analysis to enhance the completeness of the map.

👨‍🌾
field potential
in-season vegetation development
importance of Yield Calibration
field variability
handling and zoning of yield datasets
Field Potential
in-season vegetation trends
Yield Map: Raw (Original) vs Calibrated
Yield Map: Calibrated vs Synthetic
Yield Map: Calibrated vs Synthetic
Yield Map: Calibrated vs Synthetic
Yield Map: Real (Original) vs Calibrated
Yield Map: Calibrated vs Synthetic