GeoPard Tutorials | Precision Ag Software
  • Introduction to GeoPard
    • GeoPard Platform: Frequently Asked Questions (FAQ)
  • 🖥️Product Tour - Web App
    • Getting Started
      • Create a new farm
      • Draw a new field
      • Upload a field boundary
      • Edit a boundary
      • Edit a field name
      • Add a label
    • 🛰️Satellite Monitoring
      • Order Planet Scope (3m daily) imagery
      • Indices for Crops and Soils
      • 📈Crop Development Index Graph
    • 📊Zones Maps and Analytics
      • Assign Variable Rates in the Zones (Ag inputs Rates Distribution Tool)
      • Creating Zones Map using Satellite Imagery
      • Creating Zones Map using Soil/Yield/As Applied Data
      • Creating Zones Map using Topography
      • Creating Zones Map using a Template
      • Draw Zones Manually, Clone from an existing layer
      • Usage of Data Classification
      • Edit Zones Map: Merge & Split
      • Multi-Year Zones
      • Multi-Layer Analytics
      • Compare layers
      • Heterogeneity factor
      • Relative variation factor
    • 📊Equation-based Analytics
      • Batch Equation analytics
      • Catalog of Predefined Agronomic Equations
      • Catalog of Custom Functions
    • ⛰️Topography
    • ⛰️3D Maps
    • Import
      • Field Boundary
      • Soil Data
      • Yield Data
      • As Applied/As Planted Data
      • Machinery Proprietary Formats
      • Import from MyJohnDeere
    • Export / Download
      • Field Boundary Export
      • Batch Export of Boundaries, Zones and Scouting Pins
      • Zones Map Export as shapefile
      • Satellite Imagery Export as geotiff or geojson
      • Export Scouting Notes as shapefile
      • Export VRA map In ISOXML Format
      • Export to MyJohnDeere
    • 🤖API
    • Operations Log - Track errors/Imports and Analytics
    • Organizations and Roles
    • Farms Sharing between Accounts & Organizations
    • Managing Crop Season information with tags(labels)
      • Case: Managing fields for several clients
      • Case: Season details including crop and year
      • Case: Field operation details
    • ⚙️User Settings
      • Subscriptions, Account limits & Plans
      • Restoring password
      • Order the package
      • Changing preferences
    • 🚜John Deere Operations Center Integration
      • 🚜John Deere Operations Center Integration
        • 1. Create Free Trial Account with you John Deere Account
        • 2. Connect to JohnDeere Operations Center
        • 3. Connect to John Deere Organizations
        • 4. Import into GeoPard from John Deere Operations Center
        • 5. Configure Automated Data Sync
        • 6. Export Rx Maps to John Deere Operations Center as Files
        • 7. Export Field Boundaries into John Deere Operations Center
          • 7a. Organization configuration of export boundary to John Deere Operations Center as File
        • 8. Export Rx Maps to John Deere Operations Center as Work Plans
        • 9. Export Soil, Topography, Satellite or Analytics as Map Layers
      • 🚜John Deere Operations Center Data Sharing
        • 1. "Staff Member" sharing
        • 2. Problem-solving of "Staff Member" sharing
        • 3. "Partner Organization" sharing
        • 4. Problem-solving of "Partner Organization" sharing
        • 5. Problem-solving of import from John Deere to GeoPard
        • 6. Problem-solving of Work Plan creation
        • 7. Sharing Fields/Boundaries Between Partner Organizations in John Deere Ops Center, DataSync config
  • 🚀Changelog & Product Releases
    • Release Notes
      • Release Web May 2025 (Rates Distribution, improved Legends)
      • Release Web March 2025 (Improved Zones, WorkPlans updates, Yield data enhancements)
      • Release Web January 2025 (Free Trial, Usage-based Pricing Plan, USDA Yield Cleaning protocol, Export of calibrated Yield data to John Deere Ops Center, Import of kml)
      • Release Web August 2024 (Data Layer Previews, Spatially localized Zones; Use zones and Equations in new Equations)
      • Release Web July 2024 (Equation Map creation, Spatially localized zones, Seeding and Application Work Plans)
      • Release Web May 2024 (Raw view for Satellite Images, export of Zone Maps as WorkPlan to the John Deere Operations Center, redesign of Batch Analytics)
      • Release Web April 2024 (Batch Equation Maps and enhanced layer transparency)
      • Release Web February 2024 (Per area pricing, units)
      • Release Web January 2024 (many UI improvements)
      • Release Web November 2023 (Clone Polygons, Subscription management)
      • Release Web October 2023 (Yield Calibration, Equation Maps as ISOXML, PDF Export and John Deere Integration)
      • Release Web September 2023 (Cleaning & Calibrating Yield Datasets, more languages support)
      • Release Mobile August 2023 (Mobile app impovements)
      • Release Web July 2023 (Operations Log page, Sum in datasets)
      • Release Web June 2023 (Improved Equations, Operations log v1)
      • Release Mobile May 2023 (Social Login)
      • Release Web May 2023 (John Deere integration improvements)
      • Release Web January 2023 (huge amount of small improvements)
      • Release Web October 2022 (Integration with AgGateway protocols, Isoxml support and more)
      • Release Web April 2022 (3D maps and Zoning Tools)
  • 👨‍🌾Agronomy
    • Precision Agronomy Use Cases & Best Practices Overview
    • Field Management Zones (Productivity Zones) Creation Process
    • Variable Rate Seeding (Planting) Maps
    • Yield Calibration & Cleaning
    • Synthetic Yield Map
    • Create Soil Sampling Zones, Points, Route, export as KML, and execute
    • Evaluate Accuracy of Seeding Application
    • Evaluate Accuracy of Fertilizer Application
    • Field Trial Analytics
    • Nitrogen Use Efficiency & Uptake
    • Comparing Yield Datasets
    • Compare Soil Scanner Data between Years
    • Flood Detection / Insurance report
    • Profit Maps (COMING)
    • VRA/Rx/Prescription Fertilizer Maps (COMING)
    • VRA/Rx/Prescription Nitrogen Maps (COMING)
    • VRA/Rx/Prescription Spraying Maps (COMING)
    • Multi-Layer Field Potential Maps (COMING)
    • VR Lime Application Based on Soil Scanner pH Data (COMING)
    • Merging Yield Datasets Belonging to the Same Field (COMING)
  • 📱Product Tour - Mobile App
    • Installation
    • Logging in
    • Viewing satellite images
    • Viewing zones maps
    • Viewing soil data
    • Viewing yield data
    • Viewing topography maps
    • Viewing as applied datasets
    • Working in the field/Scouting zones maps
    • Working offline
    • Filters
    • Options
    • Settings
  • 🤖API Docs
    • GeoPard API Overview
    • Getting Started
    • Authorization: ApiKey, Credentials or OAuth 2.0
    • Diagrams with Basic Flows
      • 1. Field Registration
      • 2. GraphQL Subscription
      • 3. Grep Satellite Imagery
      • 4. Upload Soil | AsApplied | Yield Datasets
      • 5. Execute Equations
      • 6. Generate ZonesMap
      • 7. Download Gridded Data
      • 8. Download Original Data
    • Data Schema
    • Requests Overview
      • 1. Subscription: Get Events
      • 2. Query: Get "Fields"
      • 3. Query: Get "SatelliteImages"
      • 4. Query: Get defined "SatelliteImage"
      • 5. Query: Get "RasterMaps"
      • 6. Query: Get "ZonesMaps"
      • 7. Mutation: Generate "ZonesMap"
      • 8. Mutation: Generate "RasterMap"
      • 9. Mutation: Generate "ZonesMap" asynchronously
      • 10. Mutation: Generate "RasterMap" asynchronously
      • 11. Mutation: Generate Yield based "ZonesMap" asynchronously
      • 12. Mutation: Generate Soil based "ZonesMap" asynchronously
      • 13. Mutation: Create "Farm"
      • 14. Mutation: Create a "Field" or edit the boundary of the existing field (with optional labels)
      • 15. Query: Get "TopographyMap"
      • 16. Query: Get "YieldDatasets"
      • 17. Query: Get "SoilDatasets"
      • 18. Mutation: Generate zip archive with "ZonesMap" and "Field"
      • 19. Mutation: Delete "Field"
      • 20. Mutation: Delete "Farm"
      • 21. Mutation: Delete "ZonesMap"
      • 22. Mutation: Delete "RasterAnalytisMap"
      • 23. Mutation: Delete "SoilDataset"
      • 24. Mutation: Delete "YieldDataset"
      • Notes (Pins)
        • 25. Mutation: Save "Note" attached to "Field"
        • 26. Mutation: Save "Note" attached to "ZonesMap"
        • 27. Mutation: Save "Note" attached to "SoilDataset"
        • 28. Mutation: Save multiple "Notes", Batch operation
        • 29. Mutation: Delete "Note"
        • 30. Mutation: Delete multiple "Notes"
        • 31. Query: Get all "Notes" related to "Field"
        • 32. Query: Get "Notes" related to "ZonesMap" and type
        • 33. Query: Get "Notes" related to "SoilDataset" and type
        • 34. Query: Get a selected "Note" with all "Comments"
        • 35. Mutation: Add "Comment" to the selected "Note"
        • 36. Mutation: Add multiple "Comments" to the selected "Notes"
      • 37. Query: Get "SatelliteImages" in the defined interval
      • 38. Query: Get "UserData"
      • 39. Mutation: Set custom color schemas to selected "GeoMaps"
      • 40. Query: Get "Labels" on the account level
      • 41. Mutation: Save "Labels" on the account level
      • 42. Mutation: Delete "Label" on the account level
      • 43. Query Get "Fields"
      • 44. Mutation: Set Field Labels
      • 45. Mutation: Save User Data
      • 46. Mutation: Generate multi-layer "ZonesMap" asynchronously
      • 47. Query: Get "ZonesMaps"
      • 48. Query: Get Gridded Data from "TopographyMap"
      • 49. Query: Get Gridded Data from "FieldSatelliteImage"
      • 50. Query: Get Gridded Data from "VectorAnalysisMap"
      • 51. Query: Get Gridded Data from "YieldDataset"
      • 52. Query: Get Gridded Data from "SoilDataset"
      • 53. Query: Get Gridded Data from "AsAppliedDataset"
      • 54. Query: Get Vector Data from "SoilDataset"
      • 55. Upload zip files (over 6 MB)
      • 56. Upload photos
      • 57. Query: Get "Photos" attached to the selected "Note"
      • 58. Query: Get "Photos" attached to "Comments"
      • 59. Query: Get "AsAppliedDatasets"
      • 60. Mutation: Generate As-Applied-based "ZonesMap" asynchronously
      • 61. Mutation: Delete "AsAppliedDataset"
      • 62. Mutation: Share Farms
      • 63. Mutation: Save Organization
      • 64. Mutation: Add Users to Organization
      • 65. Mutation: Delete Users from Organization
      • 66. Mutation: Save Field
      • 67. Mutation: Save Farm
      • 68. Mutation: Refresh "VectorAnalysisMap" Statistics
      • 69. Mutation: Delete "Photo"
      • 70. Mutation: Delete multiple "Photos"
      • 71. Mutation: Generate a zip archive with "Notes"
      • 72. Query: Get Gridded Data as GeoJSON or GeoTIFF
      • 73. Query: Get Gridded Data with the Selected Buffer
      • 74. Mutation: Verify "Equation"
      • 75. Mutation: Generate "EquationMap" asynchronously
      • 76. Query: Get "EquationMap"
      • 77. Mutation: Delete "EquationMap"
      • 78. Query: Find "Fields" by "externalKey"
      • 79. Query: Find "Farms" by "externalKey"
      • 80. Query: Get Original Data
      • 81. Query: Get GeoJSON of "EquationMap"
      • 82. Query: Restore Subscription Events
      • 83. Query: Collect Platform Context
      • 84. Mutation: Calibrate and Clean YieldDataset
      • 85. Mutation: Assign Rates to VectorAnalysisMap (ZonesMap)
      • 86. Query: Get "Farms"
      • 87. Mutation: Save Custom VectorAnalysisMap (ZonesMap)
      • 88. Mutation: Export ZonesMap as Zipped Shapefile
      • 89. Mutation: Export ZonesMap as Zipped ISOXML
    • Geo Endpoints
      • WMS - Get Raster Pictures of Spatial Data Layers
        • 1. LAI
        • 2. RGB
        • 3. Field: boundary
        • 4. Field: thumbnail
        • 5. ZonesMap
        • 6. ZonesMap: custom color schema
        • 7. ZonesMap: thumbnail
        • 8. RasterMap
        • 9. RasterMap: custom color schema
        • 10. RasterMap: thumbnail
        • 11. TopographyMap: elevation in absolute numbers
        • 12. YieldDatasetsMap
        • 13. SoilDatasetsMap
        • 14. SoilDatasetsMap: custom color schema
        • 15. AsAppliedDatasetsMap
        • 16. Satellite Image: cropped by Field boundary
        • 17. Satellite Image: cropped by Field boundary and custom color schema
        • 18. YieldDatasetsMap: custom color schema
        • 19. Satellite Image: 10 colors visualization
      • WFS - Get Spatial Data Layers in Vector format (shp, geojson)
        • 1. Get the Field Boundary as Geojson
        • 2. Get the Zones map as Geojson
        • 3. Get Zones Attributes as JSON
        • 4. Get Soil data as Geojson
        • 5. Get Yield data as Geojson
    • Uploading Files
    • API FAQ
  • 🛣️Platform Roadmap
    • Roadmap
  • GIS quick Hints
    • QGIS: Change String to Number values in the shapefile
    • QGIS: Yield Data Manipulations
    • QGIS: Split Boundaries Into Subfields
    • QGIS: Merge Vector Layers
    • QGIS: Merge Selected Features from Vector Files
    • QGIS: Calculate NDVI for the Drone Geotiff File
    • QGIS: Split Multi-field Shapefiles
    • QGIS: Convert CSV to SHP
    • QGIS: Reproject Shapefile
  • Policies
    • Your Data Stays Yours, Securely Managed By GeoPard
    • Terms & Conditions
    • Privacy Policy
Powered by GitBook

Start Working with GeoPard

  • Go to GeoPard Website
  • Demo Request
  • LinkedIn

This Portal Sections

  • Introduction
  • Product Tour - Web App (incl. video)
  • Product Tour - Mobile App (incl. video)
  • Precision Agronomy Use Cases

Powered by GeoPard Agriculture - Automated precisionAg platform

On this page
  • Context
  • Comparison Approach (using Similarity Equation)
  • Real Yield Dataset (2015 Soybean vs 2018 Soybean)
  • Real Yield Dataset (2022 Corn vs 2024 Corn)
  • Synthetic vs Real Yield Dataset (2023 Oilseed Rape)

Was this helpful?

  1. Agronomy

Comparing Yield Datasets

Compare yield datasets to gain deeper insights into crop performance across seasons, covering proper Yield Cleaning and Calibration and Synthetic Yield usage.

PreviousNitrogen Use Efficiency & UptakeNextCompare Soil Scanner Data between Years

Last updated 5 months ago

Was this helpful?

Context

Modern agricultural decision-making heavily relies on Yield Datasets, which represent collected yield and reflect a major portion of grower income. These datasets must be accurate and of high quality to inform decisions on input management and optimize future planting and fertilization strategies.

Yield Data is typically collected by harvesting equipment, yet raw readings are often incomplete, contain errors, or require calibration to address sensor inconsistencies and variable field conditions. To overcome these challenges, professionals commonly employ cleaning, calibration, and synthetic dataset generation techniques to produce reliable, comparable Yield Data.

Both and are supported by GeoPard.

Comparing Yield Datasets from different crop years provides valuable insights, helping validate management practices, confirm sensor accuracy, and improve strategies for upcoming seasons. These comparisons also guide the refinement of fertility and seeding prescriptions, ensuring each decision is based on trustworthy information.

Comparison Approach (using Similarity Equation)

To quantitatively compare Yield Datasets, we utilize a pre-saved Equation named Spatial Correlation Analysis (Data Layers Similarity) that measures the similarity between yield-associated attributes from Yield Datasets on a spatial basis.

This equation assigns a similarity score, indicating how closely one dataset matches another in spatial pattern and value distribution.

The similarity values range from 0 to 1, where 0 indicates no match and 1 signifies 100% value-spatial match. In other words, the closer the similarity score is to 1, the more similar yield attributes are.

Real Yield Dataset (2015 Soybean vs 2018 Soybean)

In this case, we begin with raw Yield Data collected during two different growing seasons 2015 and 2018 with the same crop soybean. The initial datasets contain abnormally high and low locations, especially at the start/end of harvester passes, and the data requires slight recalibration.

After applying GeoPard’s cleaning and calibration tools, the resulting dataset is more uniform, consistent, and easier to interpret.

The Similarity Equation execution map is below as a screenshot.

From a statistical perspective, it shows a high average (0.869) and median (0.876), indicating that the 2018 soybean yield patterns strongly resemble those from 2015. While some areas dip to 0.599, the low variation (0.005) and modest standard deviation (0.073) confirm overall consistency.

From an agronomic standpoint, this stability suggests the field’s underlying conditions and responses to management practices have remained largely unchanged.

Real Yield Dataset (2022 Corn vs 2024 Corn)

In this scenario, we start with raw Yield Data from two corn seasons — 2022 and 2024. The initial datasets contain anomalies like abnormally high or low readings, cross passes, and curved trajectories, and indicating the need for sensor recalibration.

After applying GeoPard’s cleaning and calibration tools, the datasets become more reliable, enabling automated analysis and informed decision-making.

The Similarity Equation execution map is below as a screenshot.

From a statistical perspective, an average of 0.791 and a median of 0.799 show 2024 corn yields largely resemble 2022, though areas as low as 0.413 indicate variability. A standard deviation of 0.115 confirms some differences across the field.

From an agronomic standpoint, consistent patterns suggest stable conditions and effective management over time. However, localized lower-similarity zones may require targeted adjustments to improve future yield performance.

Synthetic vs Real Yield Dataset (2023 Oilseed Rape)

In this scenario, we begin with raw Yield Dataset from the 2023 oilseed rape season and a Synthetically generated Yield Dataset for the same crop and the same year 2023. The goal is to assess the spatial accuracy of Real versus Synthetic Yield, providing a pathway to fill unlogged data, address gaps in yield data, and correct anomalies using synthetic values. The Real Yield Dataset contains issues such as abnormally high or low readings, cross passes, curved trajectories, and zero passes, all indicating a need for sensor recalibration.

The Similarity Equation execution map is below as a screenshot.

From a statistical perspective, the high average (0.889) and median (0.904) scores indicate that, overall, the Synthetic Yield Dataset closely matches the Real 2023 Oilseed Rape Yield spatial patterns. While one area dips as low as 0.291, the low variation (0.006) and modest standard deviation (0.08) suggest that most parts of the field align closely between the Real and Synthetic Datasets, with very few outliers.

From an agronomic standpoint, this strong similarity implies that the Synthetic Yield Data can serve as a reliable proxy for real field conditions, reinforcing confidence in using modeled scenarios to guide decisions. The agronomic practices reflected in the Real Yield Data are well captured by the Synthetic Yield model, enabling more informed and consistent planning for future management strategies.

After applying GeoPard’s to the Real Yield Data and generating for oilseed rape, we can initiate a meaningful comparison of their similarity.

👨‍🌾
Cleaning & Calibration
Synthetic Yield
Yield Cleaning & Calibration
Synthetically Restoring Yield Data
Search the existing Data Layers Similarity Equation
Soybean 2015: Origin vs Cleand & Calibrated Yield Data
Soybean 2018: Origin vs Cleand & Calibrated Yield Data
Comparing Yield Similarity: Soybean 2015 vs Soybean 2018
Corn 2022: Origin vs Cleand & Calibrated Yield Data
Corn 2024: Origin vs Cleand & Calibrated Yield Data
Comparing Yield Similarity: Corn 2022 vs Corn 2024
Oilseed Rape 2023: Origin vs Cleand & Calibrated Yield Data
Oilseed Rape Synthetic Yield 2023
Comparing Yield Similarity Oilseed Rape: Actual 2023 vs Synthetic 2023