GeoPard Tutorials | Precision Ag Software
  • Introduction to GeoPard
    • GeoPard Platform: Frequently Asked Questions (FAQ)
  • 🖥️Product Tour - Web App
    • Getting Started
      • Create a new farm
      • Draw a new field
      • Upload a field boundary
      • Edit a boundary
      • Edit a field name
      • Add a label
    • 🛰️Satellite Monitoring
      • Order Planet Scope (3m daily) imagery
      • Indices for Crops and Soils
      • 📈Crop Development Index Graph
    • 📊Zones Maps and Analytics
      • Assign Variable Rates in the Zones (Ag inputs Rates Distribution Tool)
      • Creating Zones Map using Satellite Imagery
      • Creating Zones Map using Soil/Yield/As Applied Data
      • Creating Zones Map using Topography
      • Creating Zones Map using a Template
      • Draw Zones Manually, Clone from an existing layer
      • Usage of Data Classification
      • Edit Zones Map: Merge & Split
      • Multi-Year Zones
      • Multi-Layer Analytics
      • Compare layers
      • Heterogeneity factor
      • Relative variation factor
    • 📊Equation-based Analytics
      • Batch Equation analytics
      • Catalog of Predefined Agronomic Equations
      • Catalog of Custom Functions
    • ⛰️Topography
    • ⛰️3D Maps
    • Import
      • Field Boundary
      • Soil Data
      • Yield Data
      • As Applied/As Planted Data
      • Machinery Proprietary Formats
      • Import from MyJohnDeere
    • Export / Download
      • Field Boundary Export
      • Batch Export of Boundaries, Zones and Scouting Pins
      • Zones Map Export as shapefile
      • Satellite Imagery Export as geotiff or geojson
      • Export Scouting Notes as shapefile
      • Export VRA map In ISOXML Format
      • Export to MyJohnDeere
    • 🤖API
    • Operations Log - Track errors/Imports and Analytics
    • Organizations and Roles
    • Farms Sharing between Accounts & Organizations
    • Managing Crop Season information with tags(labels)
      • Case: Managing fields for several clients
      • Case: Season details including crop and year
      • Case: Field operation details
    • ⚙️User Settings
      • Subscriptions, Account limits & Plans
      • Restoring password
      • Order the package
      • Changing preferences
    • 🚜John Deere Operations Center Integration
      • 🚜John Deere Operations Center Integration
        • 1. Create Free Trial Account with you John Deere Account
        • 2. Connect to JohnDeere Operations Center
        • 3. Connect to John Deere Organizations
        • 4. Import into GeoPard from John Deere Operations Center
        • 5. Configure Automated Data Sync
        • 6. Export Rx Maps to John Deere Operations Center as Files
        • 7. Export Field Boundaries into John Deere Operations Center
          • 7a. Organization configuration of export boundary to John Deere Operations Center as File
        • 8. Export Rx Maps to John Deere Operations Center as Work Plans
        • 9. Export Soil, Topography, Satellite or Analytics as Map Layers
      • 🚜John Deere Operations Center Data Sharing
        • 1. "Staff Member" sharing
        • 2. Problem-solving of "Staff Member" sharing
        • 3. "Partner Organization" sharing
        • 4. Problem-solving of "Partner Organization" sharing
        • 5. Problem-solving of import from John Deere to GeoPard
        • 6. Problem-solving of Work Plan creation
        • 7. Sharing Fields/Boundaries Between Partner Organizations in John Deere Ops Center, DataSync config
  • 🚀Changelog & Product Releases
    • Release Notes
      • Release Web April 2025 (Rates Distribution, improved Legends)
      • Release Web March 2025 (Improved Zones, WorkPlans updates, Yield data enhancements)
      • Release Web January 2025 (Free Trial, Usage-based Pricing Plan, USDA Yield Cleaning protocol, Export of calibrated Yield data to John Deere Ops Center, Import of kml)
      • Release Web August 2024 (Data Layer Previews, Spatially localized Zones; Use zones and Equations in new Equations)
      • Release Web July 2024 (Equation Map creation, Spatially localized zones, Seeding and Application Work Plans)
      • Release Web May 2024 (Raw view for Satellite Images, export of Zone Maps as WorkPlan to the John Deere Operations Center, redesign of Batch Analytics)
      • Release Web April 2024 (Batch Equation Maps and enhanced layer transparency)
      • Release Web February 2024 (Per area pricing, units)
      • Release Web January 2024 (many UI improvements)
      • Release Web November 2023 (Clone Polygons, Subscription management)
      • Release Web October 2023 (Yield Calibration, Equation Maps as ISOXML, PDF Export and John Deere Integration)
      • Release Web September 2023 (Cleaning & Calibrating Yield Datasets, more languages support)
      • Release Mobile August 2023 (Mobile app impovements)
      • Release Web July 2023 (Operations Log page, Sum in datasets)
      • Release Web June 2023 (Improved Equations, Operations log v1)
      • Release Mobile May 2023 (Social Login)
      • Release Web May 2023 (John Deere integration improvements)
      • Release Web January 2023 (huge amount of small improvements)
      • Release Web October 2022 (Integration with AgGateway protocols, Isoxml support and more)
      • Release Web April 2022 (3D maps and Zoning Tools)
  • 👨‍🌾Agronomy
    • Precision Agronomy Use Cases & Best Practices Overview
    • Field Management Zones (Productivity Zones) Creation Process
    • Variable Rate Seeding (Planting) Maps
    • Yield Calibration & Cleaning
    • Synthetic Yield Map
    • Create Soil Sampling Zones, Points, Route, export as KML, and execute
    • Evaluate Accuracy of Seeding Application
    • Evaluate Accuracy of Fertilizer Application
    • Field Trial Analytics
    • Nitrogen Use Efficiency & Uptake
    • Comparing Yield Datasets
    • Compare Soil Scanner Data between Years
    • Flood Detection / Insurance report
    • Profit Maps (COMING)
    • VRA/Rx/Prescription Fertilizer Maps (COMING)
    • VRA/Rx/Prescription Nitrogen Maps (COMING)
    • VRA/Rx/Prescription Spraying Maps (COMING)
    • Multi-Layer Field Potential Maps (COMING)
    • VR Lime Application Based on Soil Scanner pH Data (COMING)
    • Merging Yield Datasets Belonging to the Same Field (COMING)
  • 📱Product Tour - Mobile App
    • Installation
    • Logging in
    • Viewing satellite images
    • Viewing zones maps
    • Viewing soil data
    • Viewing yield data
    • Viewing topography maps
    • Viewing as applied datasets
    • Working in the field/Scouting zones maps
    • Working offline
    • Filters
    • Options
    • Settings
  • 🤖API Docs
    • GeoPard API Overview
    • Getting Started
    • Authorization: ApiKey, Credentials or OAuth 2.0
    • Diagrams with Basic Flows
      • 1. Field Registration
      • 2. GraphQL Subscription
      • 3. Grep Satellite Imagery
      • 4. Upload Soil | AsApplied | Yield Datasets
      • 5. Execute Equations
      • 6. Generate ZonesMap
      • 7. Download Gridded Data
      • 8. Download Original Data
    • Data Schema
    • Requests Overview
      • 1. Subscription: Get Events
      • 2. Query: Get "Fields"
      • 3. Query: Get "SatelliteImages"
      • 4. Query: Get defined "SatelliteImage"
      • 5. Query: Get "RasterMaps"
      • 6. Query: Get "ZonesMaps"
      • 7. Mutation: Generate "ZonesMap"
      • 8. Mutation: Generate "RasterMap"
      • 9. Mutation: Generate "ZonesMap" asynchronously
      • 10. Mutation: Generate "RasterMap" asynchronously
      • 11. Mutation: Generate Yield based "ZonesMap" asynchronously
      • 12. Mutation: Generate Soil based "ZonesMap" asynchronously
      • 13. Mutation: Create "Farm"
      • 14. Mutation: Create a "Field" or edit the boundary of the existing field (with optional labels)
      • 15. Query: Get "TopographyMap"
      • 16. Query: Get "YieldDatasets"
      • 17. Query: Get "SoilDatasets"
      • 18. Mutation: Generate zip archive with "ZonesMap" and "Field"
      • 19. Mutation: Delete "Field"
      • 20. Mutation: Delete "Farm"
      • 21. Mutation: Delete "ZonesMap"
      • 22. Mutation: Delete "RasterAnalytisMap"
      • 23. Mutation: Delete "SoilDataset"
      • 24. Mutation: Delete "YieldDataset"
      • Notes (Pins)
        • 25. Mutation: Save "Note" attached to "Field"
        • 26. Mutation: Save "Note" attached to "ZonesMap"
        • 27. Mutation: Save "Note" attached to "SoilDataset"
        • 28. Mutation: Save multiple "Notes", Batch operation
        • 29. Mutation: Delete "Note"
        • 30. Mutation: Delete multiple "Notes"
        • 31. Query: Get all "Notes" related to "Field"
        • 32. Query: Get "Notes" related to "ZonesMap" and type
        • 33. Query: Get "Notes" related to "SoilDataset" and type
        • 34. Query: Get a selected "Note" with all "Comments"
        • 35. Mutation: Add "Comment" to the selected "Note"
        • 36. Mutation: Add multiple "Comments" to the selected "Notes"
      • 37. Query: Get "SatelliteImages" in the defined interval
      • 38. Query: Get "UserData"
      • 39. Mutation: Set custom color schemas to selected "GeoMaps"
      • 40. Query: Get "Labels" on the account level
      • 41. Mutation: Save "Labels" on the account level
      • 42. Mutation: Delete "Label" on the account level
      • 43. Query Get "Fields"
      • 44. Mutation: Set Field Labels
      • 45. Mutation: Save User Data
      • 46. Mutation: Generate multi-layer "ZonesMap" asynchronously
      • 47. Query: Get "ZonesMaps"
      • 48. Query: Get Gridded Data from "TopographyMap"
      • 49. Query: Get Gridded Data from "FieldSatelliteImage"
      • 50. Query: Get Gridded Data from "VectorAnalysisMap"
      • 51. Query: Get Gridded Data from "YieldDataset"
      • 52. Query: Get Gridded Data from "SoilDataset"
      • 53. Query: Get Gridded Data from "AsAppliedDataset"
      • 54. Query: Get Vector Data from "SoilDataset"
      • 55. Upload zip files (over 6 MB)
      • 56. Upload photos
      • 57. Query: Get "Photos" attached to the selected "Note"
      • 58. Query: Get "Photos" attached to "Comments"
      • 59. Query: Get "AsAppliedDatasets"
      • 60. Mutation: Generate As-Applied-based "ZonesMap" asynchronously
      • 61. Mutation: Delete "AsAppliedDataset"
      • 62. Mutation: Share Farms
      • 63. Mutation: Save Organization
      • 64. Mutation: Add Users to Organization
      • 65. Mutation: Delete Users from Organization
      • 66. Mutation: Save Field
      • 67. Mutation: Save Farm
      • 68. Mutation: Refresh "VectorAnalysisMap" Statistics
      • 69. Mutation: Delete "Photo"
      • 70. Mutation: Delete multiple "Photos"
      • 71. Mutation: Generate a zip archive with "Notes"
      • 72. Query: Get Gridded Data as GeoJSON or GeoTIFF
      • 73. Query: Get Gridded Data with the Selected Buffer
      • 74. Mutation: Verify "Equation"
      • 75. Mutation: Generate "EquationMap" asynchronously
      • 76. Query: Get "EquationMap"
      • 77. Mutation: Delete "EquationMap"
      • 78. Query: Find "Fields" by "externalKey"
      • 79. Query: Find "Farms" by "externalKey"
      • 80. Query: Get Original Data
      • 81. Query: Get GeoJSON of "EquationMap"
      • 82. Query: Restore Subscription Events
      • 83. Query: Collect Platform Context
      • 84. Mutation: Calibrate and Clean YieldDataset
      • 85. Mutation: Assign Rates to VectorAnalysisMap (ZonesMap)
      • 86. Query: Get "Farms"
      • 87. Mutation: Save Custom VectorAnalysisMap (ZonesMap)
      • 88. Mutation: Export ZonesMap as Zipped Shapefile
      • 89. Mutation: Export ZonesMap as Zipped ISOXML
    • Geo Endpoints
      • WMS - Get Raster Pictures of Spatial Data Layers
        • 1. LAI
        • 2. RGB
        • 3. Field: boundary
        • 4. Field: thumbnail
        • 5. ZonesMap
        • 6. ZonesMap: custom color schema
        • 7. ZonesMap: thumbnail
        • 8. RasterMap
        • 9. RasterMap: custom color schema
        • 10. RasterMap: thumbnail
        • 11. TopographyMap: elevation in absolute numbers
        • 12. YieldDatasetsMap
        • 13. SoilDatasetsMap
        • 14. SoilDatasetsMap: custom color schema
        • 15. AsAppliedDatasetsMap
        • 16. Satellite Image: cropped by Field boundary
        • 17. Satellite Image: cropped by Field boundary and custom color schema
        • 18. YieldDatasetsMap: custom color schema
        • 19. Satellite Image: 10 colors visualization
      • WFS - Get Spatial Data Layers in Vector format (shp, geojson)
        • 1. Get the Field Boundary as Geojson
        • 2. Get the Zones map as Geojson
        • 3. Get Zones Attributes as JSON
        • 4. Get Soil data as Geojson
        • 5. Get Yield data as Geojson
    • Uploading Files
    • API FAQ
  • 🛣️Platform Roadmap
    • Roadmap
  • GIS quick Hints
    • QGIS: Change String to Number values in the shapefile
    • QGIS: Yield Data Manipulations
    • QGIS: Split Boundaries Into Subfields
    • QGIS: Merge Vector Layers
    • QGIS: Merge Selected Features from Vector Files
    • QGIS: Calculate NDVI for the Drone Geotiff File
    • QGIS: Split Multi-field Shapefiles
    • QGIS: Convert CSV to SHP
    • QGIS: Reproject Shapefile
  • Policies
    • Your Data Stays Yours, Securely Managed By GeoPard
    • Terms & Conditions
    • Privacy Policy
Powered by GitBook

Start Working with GeoPard

  • Go to GeoPard Website
  • Demo Request
  • LinkedIn

This Portal Sections

  • Introduction
  • Product Tour - Web App (incl. video)
  • Product Tour - Mobile App (incl. video)
  • Precision Agronomy Use Cases

Powered by GeoPard Agriculture - Automated precisionAg platform

On this page
  • Field Context
  • Data Capturing and Preparation
  • Nitrogen Application Data
  • Harvesting (Yield) Data
  • Total Applied Nitrogen (TAN)
  • Nitrogen Uptake (NU)
  • Nitrogen Use Efficiency (NUE)
  • Nitrogen Surplus (NS)
  • Conclusion

Was this helpful?

  1. Agronomy

Nitrogen Use Efficiency & Uptake

PreviousField Trial AnalyticsNextComparing Yield Datasets

Last updated 1 year ago

Was this helpful?

In this use case, the GeoPard team highlights the significance of Nitrogen Use Efficiency (NUE) in precision farming, as demonstrated through their collaboration with LVA, a John Deere dealer in Germany. The full case study can be accessed at the . At the core of the approach is the calculation of a comprehensive Nitrogen Usage Profile for each field, utilizing data documented by machinery. This profile encompasses several crucial elements: Total Applied Nitrogen (TAN) based on machinery operations, Nitrogen Uptake (NU) derived from harvesting data, Nitrogen Use Efficiency (NUE), and Nitrogen Surplus (NS). Such in-depth profiling enables growers to assess and refine their agronomic strategies for the upcoming season, promoting more cost-effective and sustainable farming practices.

Field Context

In 2023, Baumgärtel GbR focused on improving wheat growth in their fields. They implemented a four-step nitrogen application strategy, initiating with an SSA treatment in February and then proceeding with three subsequent AHL treatments during spring. This nitrogen application was tailored using a site-specific methodology. Moreover, the HarvestLab GrainSensing System played an important role, offering the crude protein data layer, which is directly associated with the nitrogen absorbed by the plants.

More detailed context about Baumgärtel GbR and their Nitrogen experiments is available .

Data Capturing and Preparation

Machinery-collected datasets are crucial for the calculation of the Nitrogen Usage Profile. And GeoPard's efficient integration with the is pivotal in ensuring the timely collection of this data. As operations are recorded, GeoPard automatically captures datasets linked to operations like harvesting, spraying, fertilizing, seeding, and tillage.

Beyond John Deere, GeoPard is adept at handling data imports from a range of machinery data providers via API, and it also accommodates manual data uploads, whether as or specific to different machinery manufacturers.

Essential for the Nitrogen Profiling are datasets documented applied Nitrogen Applications carried out during the season and Harvesting (Yield) Data.

Nitrogen Application Data

During the 2023 growing season, the wheat crop underwent a meticulously structured nitrogen application schedule, comprising four separate treatments:

  1. SSA product on February 23, 2023

  2. AHL product on March 18, 2023

  3. AHL product on April 6, 2023

  4. AHL product on May 13, 2023.

Harvesting (Yield) Data

Total Applied Nitrogen (TAN)

Total Applied Nitrogen (TAN) represents the total nitrogen applied to a field, measured in kg/ha, and is calculated from the sum of actual nitrogen products used during the crop season. In pursuit of maximum accuracy, this evaluation exclusively considers the actual AppliedRate data.

Nitrogen Uptake (NU)

Nitrogen Uptake (NU) quantifies the nitrogen consumed by plants during their growth season and is calculated using two vital components: the crude protein measurement from the HarvestLab Grain Sensing System (1) and the total harvested yield mass (2). Here NU is expressed in absolute terms as kg/ha.

Nitrogen Use Efficiency (NUE)

Nitrogen Use Efficiency (NUE) is the ratio of consumed Nitrogen to total applied Nitrogen, expressed in percentages, and is calculated from Nitrogen Uptake (NU) and Total Applied Nitrogen (TAN).

An NUE near 100% signifies optimal utilization where plants have consumed almost all applied Nitrogen.

Whereas values around 50% indicate over-application, leading to residual Nitrogen in the soil.

And values over 100% suggest under-application, relying on soil Nitrogen reserves.

These extremes, depicted in a visual map, are both undesirable: low NUE points to excess fertilization (shown in red), while high NUE indicates soil depletion (shown in green).

Nitrogen Surplus (NS)

Nitrogen Surplus (NS) is the difference between the Total Applied Nitrogen (TAN) and the Nitrogen Uptake (NU) by plants, expressed in kg/ha, indicating the unused Nitrogen in a season. This metric is crucial for planning Nitrogen applications for the following season. It is visually represented in the following map.

Conclusion

  1. Data Capturing: GeoPard's seamless integration with the John Deere Operations Center enables real-time and accurate data capture, forming the backbone of all subsequent analytics. Additionally, GeoPard API capabilities extend to working with various machinery proprietary formats, ensuring comprehensive data incorporation. Additional data calibration is required and incorporated as part of the subsequent analytics in GeoPard.

  2. Nitrogen Usage Profile: The Nitrogen Usage Profile, encompassing Total Applied Nitrogen (TAN), Nitrogen Uptake (NU), Nitrogen Use Efficiency (NUE), and Nitrogen Surplus (NS), provides a holistic view of nitrogen geospatial and statistical dynamics in the field. These metrics collectively guide crop growers in understanding the complete nitrogen lifecycle and its efficient management in the season.

  3. Adaptive Nitrogen Strategies: By leveraging insights from the Nitrogen Usage Profile, growers can fine-tune their nitrogen application strategies, catering to the diverse needs of different field areas. This approach not only enhances crop yields but also promotes sustainable and efficient agricultural practices, addressing the unique nitrogen requirements (costs) of various field sections.

The August 8, 2023, harvest dataset, featuring key attributes like WetMass and CrudeProtein, serves as a foundation for calculating Nitrogen Uptake (NU). However, to ensure analytical precision and account for variability, is essential, especially in instances of exceptional yields, such as the notable 19 t/ha for wheat.

👨‍🌾
additional calibration of the Yield Dataset
LINK
HERE
JohnDeere Operation Center
shapefile
proprietary format
s
Nitrogen Application (SSA Product) 2023-02-23
Nitrogen Application (AHL Product) 2023-03-18
Nitrogen Application (AHL Product) 2023-04-06
Nitrogen Application (AHL Product) 2023-05-13
Harvest 2023-08-08: CrudeProtein
Harvest 2023-08-08: WetMass
Harvest 2023-08-08: WetMass Calibrated
Total Applied Nitrogen (TAN) 2023
Nitrogen Uptake (NU) 2023
Nitrogen Uptake (NU) 2023: Statistical Distribution
Nitrogen Use Efficiency (NUE) 2023
Nitrogen Use Efficiency (NUE) 2023: Statistical Distribution
Nitrogen Surplus (NS) 2023