GeoPard Tutorials | Precision Ag Software
  • Introduction to GeoPard
    • GeoPard Platform: Frequently Asked Questions (FAQ)
  • 🖥️Product Tour - Web App
    • Getting Started
      • Create a new farm
      • Draw a new field
      • Upload a field boundary
      • Edit a boundary
      • Edit a field name
      • Add a label
    • 🛰️Satellite Monitoring
      • Order Planet Scope (3m daily) imagery
      • Indices for Crops and Soils
      • 📈Crop Development Index Graph
    • 📊Zones Maps and Analytics
      • Assign Variable Rates in the Zones (Ag inputs Rates Distribution Tool)
      • Creating Zones Map using Satellite Imagery
      • Creating Zones Map using Soil/Yield/As Applied Data
      • Creating Zones Map using Topography
      • Creating Zones Map using a Template
      • Draw Zones Manually, Clone from an existing layer
      • Usage of Data Classification
      • Edit Zones Map: Merge & Split
      • Multi-Year Zones
      • Multi-Layer Analytics
      • Compare layers
      • Heterogeneity factor
      • Relative variation factor
    • 📊Equation-based Analytics
      • Batch Equation analytics
      • Catalog of Predefined Agronomic Equations
      • Catalog of Custom Functions
    • ⛰️Topography
    • ⛰️3D Maps
    • Import
      • Field Boundary
      • Soil Data
      • Yield Data
      • As Applied/As Planted Data
      • Machinery Proprietary Formats
      • Import from MyJohnDeere
    • Export / Download
      • Field Boundary Export
      • Batch Export of Boundaries, Zones and Scouting Pins
      • Zones Map Export as shapefile
      • Satellite Imagery Export as geotiff or geojson
      • Export Scouting Notes as shapefile
      • Export VRA map In ISOXML Format
      • Export to MyJohnDeere
    • 🤖API
    • Operations Log - Track errors/Imports and Analytics
    • Organizations and Roles
    • Farms Sharing between Accounts & Organizations
    • Managing Crop Season information with tags(labels)
      • Case: Managing fields for several clients
      • Case: Season details including crop and year
      • Case: Field operation details
    • ⚙️User Settings
      • Subscriptions, Account limits & Plans
      • Restoring password
      • Order the package
      • Changing preferences
    • 🚜John Deere Operations Center Integration
      • 🚜John Deere Operations Center Integration
        • 1. Create Free Trial Account with you John Deere Account
        • 2. Connect to JohnDeere Operations Center
        • 3. Connect to John Deere Organizations
        • 4. Import into GeoPard from John Deere Operations Center
        • 5. Configure Automated Data Sync
        • 6. Export Rx Maps to John Deere Operations Center as Files
        • 7. Export Field Boundaries into John Deere Operations Center
          • 7a. Organization configuration of export boundary to John Deere Operations Center as File
        • 8. Export Rx Maps to John Deere Operations Center as Work Plans
        • 9. Export Soil, Topography, Satellite or Analytics as Map Layers
      • 🚜John Deere Operations Center Data Sharing
        • 1. "Staff Member" sharing
        • 2. Problem-solving of "Staff Member" sharing
        • 3. "Partner Organization" sharing
        • 4. Problem-solving of "Partner Organization" sharing
        • 5. Problem-solving of import from John Deere to GeoPard
        • 6. Problem-solving of Work Plan creation
        • 7. Sharing Fields/Boundaries Between Partner Organizations in John Deere Ops Center, DataSync config
  • 🚀Changelog & Product Releases
    • Release Notes
      • Release Web May 2025 (Rates Distribution, improved Legends)
      • Release Web March 2025 (Improved Zones, WorkPlans updates, Yield data enhancements)
      • Release Web January 2025 (Free Trial, Usage-based Pricing Plan, USDA Yield Cleaning protocol, Export of calibrated Yield data to John Deere Ops Center, Import of kml)
      • Release Web August 2024 (Data Layer Previews, Spatially localized Zones; Use zones and Equations in new Equations)
      • Release Web July 2024 (Equation Map creation, Spatially localized zones, Seeding and Application Work Plans)
      • Release Web May 2024 (Raw view for Satellite Images, export of Zone Maps as WorkPlan to the John Deere Operations Center, redesign of Batch Analytics)
      • Release Web April 2024 (Batch Equation Maps and enhanced layer transparency)
      • Release Web February 2024 (Per area pricing, units)
      • Release Web January 2024 (many UI improvements)
      • Release Web November 2023 (Clone Polygons, Subscription management)
      • Release Web October 2023 (Yield Calibration, Equation Maps as ISOXML, PDF Export and John Deere Integration)
      • Release Web September 2023 (Cleaning & Calibrating Yield Datasets, more languages support)
      • Release Mobile August 2023 (Mobile app impovements)
      • Release Web July 2023 (Operations Log page, Sum in datasets)
      • Release Web June 2023 (Improved Equations, Operations log v1)
      • Release Mobile May 2023 (Social Login)
      • Release Web May 2023 (John Deere integration improvements)
      • Release Web January 2023 (huge amount of small improvements)
      • Release Web October 2022 (Integration with AgGateway protocols, Isoxml support and more)
      • Release Web April 2022 (3D maps and Zoning Tools)
  • 👨‍🌾Agronomy
    • Precision Agronomy Use Cases & Best Practices Overview
    • Field Management Zones (Productivity Zones) Creation Process
    • Variable Rate Seeding (Planting) Maps
    • Yield Calibration & Cleaning
    • Synthetic Yield Map
    • Create Soil Sampling Zones, Points, Route, export as KML, and execute
    • Evaluate Accuracy of Seeding Application
    • Evaluate Accuracy of Fertilizer Application
    • Field Trial Analytics
    • Nitrogen Use Efficiency & Uptake
    • Comparing Yield Datasets
    • Compare Soil Scanner Data between Years
    • Flood Detection / Insurance report
    • Profit Maps (COMING)
    • VRA/Rx/Prescription Fertilizer Maps (COMING)
    • VRA/Rx/Prescription Nitrogen Maps (COMING)
    • VRA/Rx/Prescription Spraying Maps (COMING)
    • Multi-Layer Field Potential Maps (COMING)
    • VR Lime Application Based on Soil Scanner pH Data (COMING)
    • Merging Yield Datasets Belonging to the Same Field (COMING)
  • 📱Product Tour - Mobile App
    • Installation
    • Logging in
    • Viewing satellite images
    • Viewing zones maps
    • Viewing soil data
    • Viewing yield data
    • Viewing topography maps
    • Viewing as applied datasets
    • Working in the field/Scouting zones maps
    • Working offline
    • Filters
    • Options
    • Settings
  • 🤖API Docs
    • GeoPard API Overview
    • Getting Started
    • Authorization: ApiKey, Credentials or OAuth 2.0
    • Diagrams with Basic Flows
      • 1. Field Registration
      • 2. GraphQL Subscription
      • 3. Grep Satellite Imagery
      • 4. Upload Soil | AsApplied | Yield Datasets
      • 5. Execute Equations
      • 6. Generate ZonesMap
      • 7. Download Gridded Data
      • 8. Download Original Data
    • Data Schema
    • Requests Overview
      • 1. Subscription: Get Events
      • 2. Query: Get "Fields"
      • 3. Query: Get "SatelliteImages"
      • 4. Query: Get defined "SatelliteImage"
      • 5. Query: Get "RasterMaps"
      • 6. Query: Get "ZonesMaps"
      • 7. Mutation: Generate "ZonesMap"
      • 8. Mutation: Generate "RasterMap"
      • 9. Mutation: Generate "ZonesMap" asynchronously
      • 10. Mutation: Generate "RasterMap" asynchronously
      • 11. Mutation: Generate Yield based "ZonesMap" asynchronously
      • 12. Mutation: Generate Soil based "ZonesMap" asynchronously
      • 13. Mutation: Create "Farm"
      • 14. Mutation: Create a "Field" or edit the boundary of the existing field (with optional labels)
      • 15. Query: Get "TopographyMap"
      • 16. Query: Get "YieldDatasets"
      • 17. Query: Get "SoilDatasets"
      • 18. Mutation: Generate zip archive with "ZonesMap" and "Field"
      • 19. Mutation: Delete "Field"
      • 20. Mutation: Delete "Farm"
      • 21. Mutation: Delete "ZonesMap"
      • 22. Mutation: Delete "RasterAnalytisMap"
      • 23. Mutation: Delete "SoilDataset"
      • 24. Mutation: Delete "YieldDataset"
      • Notes (Pins)
        • 25. Mutation: Save "Note" attached to "Field"
        • 26. Mutation: Save "Note" attached to "ZonesMap"
        • 27. Mutation: Save "Note" attached to "SoilDataset"
        • 28. Mutation: Save multiple "Notes", Batch operation
        • 29. Mutation: Delete "Note"
        • 30. Mutation: Delete multiple "Notes"
        • 31. Query: Get all "Notes" related to "Field"
        • 32. Query: Get "Notes" related to "ZonesMap" and type
        • 33. Query: Get "Notes" related to "SoilDataset" and type
        • 34. Query: Get a selected "Note" with all "Comments"
        • 35. Mutation: Add "Comment" to the selected "Note"
        • 36. Mutation: Add multiple "Comments" to the selected "Notes"
      • 37. Query: Get "SatelliteImages" in the defined interval
      • 38. Query: Get "UserData"
      • 39. Mutation: Set custom color schemas to selected "GeoMaps"
      • 40. Query: Get "Labels" on the account level
      • 41. Mutation: Save "Labels" on the account level
      • 42. Mutation: Delete "Label" on the account level
      • 43. Query Get "Fields"
      • 44. Mutation: Set Field Labels
      • 45. Mutation: Save User Data
      • 46. Mutation: Generate multi-layer "ZonesMap" asynchronously
      • 47. Query: Get "ZonesMaps"
      • 48. Query: Get Gridded Data from "TopographyMap"
      • 49. Query: Get Gridded Data from "FieldSatelliteImage"
      • 50. Query: Get Gridded Data from "VectorAnalysisMap"
      • 51. Query: Get Gridded Data from "YieldDataset"
      • 52. Query: Get Gridded Data from "SoilDataset"
      • 53. Query: Get Gridded Data from "AsAppliedDataset"
      • 54. Query: Get Vector Data from "SoilDataset"
      • 55. Upload zip files (over 6 MB)
      • 56. Upload photos
      • 57. Query: Get "Photos" attached to the selected "Note"
      • 58. Query: Get "Photos" attached to "Comments"
      • 59. Query: Get "AsAppliedDatasets"
      • 60. Mutation: Generate As-Applied-based "ZonesMap" asynchronously
      • 61. Mutation: Delete "AsAppliedDataset"
      • 62. Mutation: Share Farms
      • 63. Mutation: Save Organization
      • 64. Mutation: Add Users to Organization
      • 65. Mutation: Delete Users from Organization
      • 66. Mutation: Save Field
      • 67. Mutation: Save Farm
      • 68. Mutation: Refresh "VectorAnalysisMap" Statistics
      • 69. Mutation: Delete "Photo"
      • 70. Mutation: Delete multiple "Photos"
      • 71. Mutation: Generate a zip archive with "Notes"
      • 72. Query: Get Gridded Data as GeoJSON or GeoTIFF
      • 73. Query: Get Gridded Data with the Selected Buffer
      • 74. Mutation: Verify "Equation"
      • 75. Mutation: Generate "EquationMap" asynchronously
      • 76. Query: Get "EquationMap"
      • 77. Mutation: Delete "EquationMap"
      • 78. Query: Find "Fields" by "externalKey"
      • 79. Query: Find "Farms" by "externalKey"
      • 80. Query: Get Original Data
      • 81. Query: Get GeoJSON of "EquationMap"
      • 82. Query: Restore Subscription Events
      • 83. Query: Collect Platform Context
      • 84. Mutation: Calibrate and Clean YieldDataset
      • 85. Mutation: Assign Rates to VectorAnalysisMap (ZonesMap)
      • 86. Query: Get "Farms"
      • 87. Mutation: Save Custom VectorAnalysisMap (ZonesMap)
      • 88. Mutation: Export ZonesMap as Zipped Shapefile
      • 89. Mutation: Export ZonesMap as Zipped ISOXML
    • Geo Endpoints
      • WMS - Get Raster Pictures of Spatial Data Layers
        • 1. LAI
        • 2. RGB
        • 3. Field: boundary
        • 4. Field: thumbnail
        • 5. ZonesMap
        • 6. ZonesMap: custom color schema
        • 7. ZonesMap: thumbnail
        • 8. RasterMap
        • 9. RasterMap: custom color schema
        • 10. RasterMap: thumbnail
        • 11. TopographyMap: elevation in absolute numbers
        • 12. YieldDatasetsMap
        • 13. SoilDatasetsMap
        • 14. SoilDatasetsMap: custom color schema
        • 15. AsAppliedDatasetsMap
        • 16. Satellite Image: cropped by Field boundary
        • 17. Satellite Image: cropped by Field boundary and custom color schema
        • 18. YieldDatasetsMap: custom color schema
        • 19. Satellite Image: 10 colors visualization
      • WFS - Get Spatial Data Layers in Vector format (shp, geojson)
        • 1. Get the Field Boundary as Geojson
        • 2. Get the Zones map as Geojson
        • 3. Get Zones Attributes as JSON
        • 4. Get Soil data as Geojson
        • 5. Get Yield data as Geojson
    • Uploading Files
    • API FAQ
  • 🛣️Platform Roadmap
    • Roadmap
  • GIS quick Hints
    • QGIS: Change String to Number values in the shapefile
    • QGIS: Yield Data Manipulations
    • QGIS: Split Boundaries Into Subfields
    • QGIS: Merge Vector Layers
    • QGIS: Merge Selected Features from Vector Files
    • QGIS: Calculate NDVI for the Drone Geotiff File
    • QGIS: Split Multi-field Shapefiles
    • QGIS: Convert CSV to SHP
    • QGIS: Reproject Shapefile
  • Policies
    • Your Data Stays Yours, Securely Managed By GeoPard
    • Terms & Conditions
    • Privacy Policy
Powered by GitBook

Start Working with GeoPard

  • Go to GeoPard Website
  • Demo Request
  • LinkedIn

This Portal Sections

  • Introduction
  • Product Tour - Web App (incl. video)
  • Product Tour - Mobile App (incl. video)
  • Precision Agronomy Use Cases

Powered by GeoPard Agriculture - Automated precisionAg platform

On this page
  • Use Case Tutorial: Flood Detection and Insurance Reporting with GeoPard Agriculture
  • Who Can Use This Module?
  • Overview
  • Step 1: Accessing the GeoPard Platform
  • Step 2: Selecting the Data Layers for Flood Detection
  • Step 3: Comparing Layers to Track Flood Progression
  • Step 4: Analyzing the Flood Maps
  • Step 5: Generating Reports for Insurance Claims
  • Step 6: Taking Corrective Actions and Analyze the Area (history & topography)
  • Key Features Highlighted
  • Why This Matters
  • Conclusion

Was this helpful?

  1. Agronomy

Flood Detection / Insurance report

GeoPard software helps detecting flood cases to assess damage to file insurance damage reports and verify claims remotely

PreviousCompare Soil Scanner Data between YearsNextProfit Maps (COMING)

Last updated 2 months ago

Was this helpful?

Use Case Tutorial: Flood Detection and Insurance Reporting with GeoPard Agriculture

This tutorial provides a step-by-step guide on using the GeoPard Agriculture platform for flood detection and insurance reporting. It is based on a real-world example from Salinas Valley, California, following a flood event in March 2023. The GeoPard platform's flood map analysis helps identify areas with excess water that may lead to crop damage, enabling farmers to claim insurance and allowing insurance companies to assess flood cases efficiently.


Who Can Use This Module?

  • Farmers: To document flood damage and submit insurance claims.

  • Insurance Companies: To detect flood cases, verify claims, and assess the extent of crop damage.


Overview

GeoPard's flood map analysis uses advanced remote sensing and analytics to identify flooded areas, track flood progression, and quantify damage. This tutorial demonstrates how to leverage these tools to:

  • Detect flooding in agricultural fields.

  • Analyze flood severity using data layers and statistics.

  • Generate reports for insurance claims.

  • Plan corrective actions to mitigate future risks.

The example focuses on the "Potter Rd (342.93 ha)" field in Salinas Valley, comparing flood maps from March 15, 2023, and March 25, 2023, to visualize flood progression.


Step 1: Accessing the GeoPard Platform

  1. Navigate to the "Fields" section in the sidebar.

  2. Select the specific field or area you want to analyze. For this example, choose the "Potter Rd (342.93 ha)" field in Salinas Valley.


Step 2: Selecting the Data Layers for Flood Detection

  1. GeoPard offers various data layers for remote sensing and analytics. For flood detection, the NDWI (Normalized Difference Water Index) layer is ideal, as it highlights areas with high water content.

  2. Select satellite imagery date

  3. Select the NDWI layer.

  4. Optionally, explore other layers like RGB or NDVI for additional insights into crop health post-flood.


Step 3: Comparing Layers to Track Flood Progression

  1. Use the "Compare Layers" feature to analyze flood progression over time.

  2. Select up to four layers for comparison. In this example, compare NDWI layers from:

    • March 15, 2023 (before peak flooding).

    • March 25, 2023 (after peak flooding).

  3. This comparison visualizes how the flood evolved, with flooded areas highlighted in light blue/blue.


Step 4: Analyzing the Flood Maps

  1. The flood maps display areas of excess water in light blue, with a color scale ranging from black (no water) to light blue (high water presence).

  2. Use the zoom feature to focus on specific areas, such as fields near the Salinas River.

  3. Refer to the legend for the color scale, which shows water intensity values (e.g., 0 to 1). Where blur

  4. Review the statistical data provided:

    • Average: 0.067

    • Median: 0.035

    • Standard deviation: 0.095 These metrics quantify the flood's severity.

  5. If NDWI > 0 -> flood event


Step 5: Generating Reports for Insurance Claims

  1. Farmers:

    • Use the flood maps and statistical data to document crop damage for insurance claims.

    • Use the "Export Data" feature to download the flood maps and relevant analytics.

    • Options: PDF, Shapefile or GeoJson

    • Submit the exported reports to your insurance provider as evidence of flood damage.

    • In the case below - not all farm areas where damaged

  2. Insurance Companies:

    • Use the same data to verify claims, assess the extent of damage, and expedite the claims process.

    • Optimize processes by using reliable remote sensing software & analytics of any area (we support 50+ countries)


Step 6: Taking Corrective Actions and Analyze the Area (history & topography)

  1. Beyond insurance reporting, use the flood maps to identify areas needing immediate attention, such as persistent waterlogging.

  2. Plan corrective measures, such as:

    • Improving drainage systems.

    • Adjusting crop management practices to mitigate future risks.

  3. Analyze Historical field productiovity & Topography of the field


Key Features Highlighted

  • NDWI Layer: Essential for detecting water presence and flood extent.

  • Layer Comparison: Allows tracking of flood progression over time.

  • Statistical Data: Provides quantitative insights into flood severity.

  • Export Functionality: Enables easy sharing of data for insurance claims.


Why This Matters

  • Timely Analysis: Early detection of flooding allows for faster response times, reducing crop losses.

  • Insurance Efficiency: Streamlines the claims process for both farmers and insurers.

  • Risk Mitigation: Helps farmers and local agencies take proactive steps to protect crops and ensure food security.


  1. External Articles about the case:


Conclusion

GeoPard's flood detection and insurance reporting tools empower farmers and insurance companies to respond effectively to natural disasters. By leveraging advanced remote sensing and analytics, users can detect floods early, assess damage accurately, and take corrective actions to protect agricultural productivity and livelihoods. This tutorial provides a clear, actionable guide for using the GeoPard platform in real-world applications, ensuring users can maximize its capabilities for flood management and insurance reporting.

Log in to the GeoPard Agriculture platform using your credentials at .

Discusses the impact of flooding on farm workers in Pajaro, California.

Covers flood preparation and crop losses near the Salinas River.

YouTube Video: Provides insights into the flood's impact on Salinas Valley agriculture.

👨‍🌾
GeoPard Agriculture
The Guardian: California Farm Workers and Flooding
LA Times: Salinas River Flooding
Markon Cooperative on Flood Impact
Flood Detection and Insurance Reporting with GeoPard Agriculture
Compare NDWI layers after the flood event and in 10 days.
Export Flood Analysis as PDF, with index values and areas damaged
Low Elevation areas appeared to be damaged by flood
Use Case Tutorial: Flood Detection and Insurance Reporting with GeoPard Agriculture